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Abstract—Security protocols have been commonly used to
protect secure communication in networked systems. It is often
assumed that individual wireless nodes or leaders in a system
are sincere and use techniques (authentication, permission, etc.)
of these protocols to have secure communications. We discover
that such protocols may be leaked by a sophisticated collusion
attack (a type of attacks in which a node intentionally has a
secret agreement with an adversary, or is compromised by an
adversary). Before an attack is made, the node seems to be
working properly, communicating with others, and providing
correct values/decisions. Currently, there is no systematic method
for detecting such an attack. In this paper, we propose CAD, a
Collusion Attack Detection scheme for networked systems. We
think that wireless nodes usually have some correlation patterns
in communication metrics (e.g., radio timing, amount of packets
transmitted). When there is a significant discrepancy in such
patterns with a node, the node is said to be colluded. We evaluate
CAD in simulations with real data traces. Evaluation results
demonstrate that CAD achieves a collusion detection rate up to
92%, which is at least 50% better compared to existing schemes.

Index Terms—Security, collusion attack, networked systems,
wireless networks, wireless sensor networks, correlation

I. INTRODUCTION

Networked systems are systems composed of dynamic units
or nodes that interact over a network. There are different types
of networked systems, including wireless networks, wireless
sensor networks (WSNs), wireless ad hoc networks (WAN), e-
commerce systems, and so on [1], [2]. These systems are easily
prone to security attacks [3]–[5]. Often, they are unattended
and unprotected. Some inherent features, like limited battery
and low memory, make the systems infeasible for using
conventional security solutions. There are a variety of attacks
on these systems, which can be generally classified as routing
attacks and data traffic attacks. Some of the data attacks in
network systems are wormholes, sinkholes, jamming, selective
forwarding, and Sybil attack. There are a lot of mitigation
protocols/schemes used as a defense against these types of
attacks [5]–[10].

Some attacks are assumed to be with data aggregation.
Robust data aggregation is a serious concern in networked
systems, and there are a number of research efforts in-
vestigating malicious data injection by taking into account
various adversary models [3], [11], [12]. Trust and reputation
systems are being suggested as effective security mechanisms
for distributed systems. Since networked systems are being
increasingly deployed in many application domains, assessing
the trustworthiness of reported data from networked nodes
has still remained a challenging issue. Trust and reputation,
in particular, play a critical role in WSNs as a method of
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Fig. 1. A snapshot of a collusion attack.

resolving a number of important problems, e.g., secure data
routing, fault tolerance, false data detection, compromised
node detection, secure data aggregation, outlier detection,
signal perturbation, and so on [11], [13], [14]. When given
a WSN, sensors deployed in hostile environments may be
subject to node compromising attacks by adversaries who
intend to inject false data into the system. In this context,
assessing the trustworthiness of the acquired data becomes a
difficult task.

In many security protocols/methods, it is often assumed that
individual nodes or leaders in the networks are sincere and use
techniques (authentication, permission, etc.) of these protocols
in communications. However, these protocols may be leaked
as the result of a sophisticated collusion attack. This is an
attack when a node intentionally has a secret agreement with
an adversary, or is compromised by an adversary that has a
high level of knowledge regarding transmission, aggregation
algorithm, and so on, as shown in Fig. 1. Before experiencing
a worse situation in the system, the node seems to function
properly, communicating with others, and providing correct
values/decisions. When there is a attack of collusion, a minor
variation at the colluded node behavior occurs, which can be
the results that the adversary can read or inject information.
When the attackers have a high level of knowledge about
the system, transmission model, aggregation algorithm, and
its parameters, they can conduct sophisticated attacks on the
systems by exploiting false data injection through one or more
compromised nodes.

In this paper, we propose a collusion attack detection
scheme, called CAD. It is based on correlations of network
components or performance metric. During the network opera-
tion, at some point of time, we may find network performance
degradations by observing performance metrics, e.g., a high or
low packet delivery ratio (PDR). The nodes which are colluded
can be simply recognized by such performance metrics. For



example, a node may generate apparently abnormal packets
in comparison to its neighbors. Considering low-power and
listening mode of a node, the radio is switched on only for
receiving, sending, or idle listening. Consequently, the radio-
on time should be closely correlated with the amount of traffic
passing through the node. If a node is colluded at some point
of time, the number of packets transmitted to or from it
increases or decreases much more than usual in comparison
both to its own, and its neighboring node transmissions. If any
individual amount of the performance metrics is not irregular,
the correlation between the radio-on-time and the number of
transmitted packets undoubtedly implies a discrepancy on that
node. This suggests that the node either has a secret agreement
with an adversary (malicious party), or it is compromised.

To handle these problems, CAD includes two sub-detection
schemes, namely, temporal and spatial collusion attack detec-
tion schemes, respectively. We think that wireless nodes usu-
ally have some correlation patterns in system communication
metrics (e.g., radio-on time, number of packets transmitted,
number of negative acknowledgment-NACK). When there is
a significant discrepancy in such patterns with a node, the node
is assumed to be colluded. In CAD, we take advantage of the
correlations among the performance metrics of every node,
using a correlation map that describes the latent or over-active
status of the node. The correlation map can characterize the
actual attack situation on the map. Such a correlation map is
updated regularly using the node’s performance metrics.

We make the following main contributions in this paper:
• We design CAD for collusion detection. We do not

assume any predefined principle behaviors/rules in CAD
so that it can be applied to other applications, such as
social networks.

• We provide a correlation mapping of network perfor-
mance metrics that distinguish internal correlations inside
a node. We propose algorithms for detecting collusion
information in the temporal and spatial dimensions in a
distributed manner.

• We evaluate CAD through simulations using real data
traces. The evaluation results demonstrate collusion de-
tection rate, up to 92%, under the collusion information
injection.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III provides the CAD design.
Section IV offers the CAD scheme, including the two detection
scheme. Section V evaluates CAD performance. Finally, we
conclude the paper and recommend future work in Section VI.

II. RELATED WORK

A variety of security attack detection has been in the
literature, including wormhole, sinkhole, jamming, selective
forwarding, and Sybil attack [6]–[9]. Some attacks are as-
sumed to be with data aggregation. Robust data aggregation is
a serious concern in distributed systems, and there are a num-
ber of research efforts investigating malicious data injection
by taking into account various adversary models. Trust and
reputation system are being suggested as an effective security

mechanism for distributed systems. Since distributed systems
are being increasingly deployed in many application domains,
assessing trustworthiness of reported data from distributed
nodes has still remained a challenging issue. Particularly,
trust and reputation systems play s critical role in WSNs
as a method of resolving a number of important problems,
e.g., secure data routing, fault tolerance, false data detection,
compromised node detection, secure data aggregation, cluster
head election, outlier detection, and so on [11], [13], [14].
When given a WSN, sensors deployed in hostile environments
may be subject to node compromising attacks by adversaries
who intend to inject false data into the system. In this context,
assessing the trustworthiness of the acquired data becomes a
difficult task.

Key and cryptography based collusion attack detection is
proposed in [15]. When a newly user colluded with a revoked
user can recover the group session keys. It can detect some ba-
sic collusion attack during packet encryption and description.
Later, this scheme is improved by [10]. It controls self-healing
key-distribution to defend a collusion attack, which is based
on one-way key chains and secret sharing in WSNs.

Iterative Filtering (IF) techniques are used in WSNs for
security. The reason is that these can provide solution for
both data aggregation and data trustworthiness assessment by
exploiting a single iterative procedure [16]. Each sensor’s trust
estimation is based on the distance of the readings between the
current readings and previous readings, and distance between
its own readings and the readings of all neighbors. Sensors
whose readings significantly differ from other estimate are
assigned less trustworthiness. Subsequently, sensors’ readings
are given a lower weight in the aggregation process in the
current iteration round. Utilizing the similar idea, a large set
of work has been suggested on IF algorithms for trust and
reputation systems [3], [16]–[18].

Recently, the performance of IF algorithms for data aggre-
gation in the presence of collusion attacks has been studied
[3]. This work shows IF algorithms simultaneously aggregate
data from multiple sources and provide trust assessment of
these sources, usually in a form of corresponding weight
factors assigned to data provided by each source. It also shows
that current IF algorithms, while significantly more robust
against collusion attacks than the simple averaging methods,
are nevertheless susceptible to collusion attack. However, the
aggregation is affected when cullsution attack is made at the
node level, which is not discovered.

Looking into more details, during the network operation, at
some point of tome, the network performance may degrade,
e.g., low packet delivery ratio (PDR). A portion of colluded
nodes can be easily recognized by such performance metrics.
For example, such nodes generate apparently abnormal pack-
ets. For instance, considering low-power node and listening
mode, the radio is switched on only for receiving, sending,
or idle listening. Consequently, the radio-on time should be
closely correlated with the amount of traffic passing the node.
If a node is colluded at some point of time, transmission of
a number of packets from it become very lower or higher



than its usual transmission, or than itself or its neighboring
node transmission. Any individual amount of the performance
metrics is not irregular, but the correlation between radio-
on time and the number of transmitted packets undoubtedly
implies discrepancy on that node. This suggests that the
node either compromised (having a secret agreement with the
adversary (malicious party) or it is in collusion attack.

To handle these problems, in this paper we propose CAD,
a lightweight collusion attack detection scheme. We think
that wireless nodes usually have some correlation patterns in
system communication metrics (e.g., radio-on time, number of
packets transmitted). When there is a significant discrepancy
in such patterns with a node, the node is assumed to be
colluded. In CAD, we take advantage of the correlations
among performance metrics of every node using a correlation
map that describes the latent or over active status of the node.
The correlation map can characterize the actual attack situation
in the map.

III. THE DESIGN OF CAD

In this section, we present the design of the collusion
attack detection (CAD) scheme. This includes system model,
adversary model, and the reputation in the system.

Definition 1. [Collusion Attack] A type of security attack
or threat in which a node intentionally makes a secret agree-
ment with an adversary, or the node is somehow made to have
such an agreement. The adversary may collect confidential
information from the system, and then conduct sophisticated
attacks on the system by exploiting false data injection through
one or more compromised nodes.

A. System Model

A system can be any kind of networks (e.g., sensor network,
Wi-Fi network, social network, peer-to peer system, etc.) con-
sisting a set of N nodes. The system is in charge of performing
certain types of application tasks, e.g., sensing, data collection
(such as temperature), or making transactions or interactions.
Each node is responsible for sending its communications to
its neighboring nodes towards a control center or base station
(BS). Nodes uses beacon messages for synchronization among
them. Each node is able to talk to some of its neighboring node
using given communication range. The nodes communicate
with each other by broadcasting messages across channels.
These are assumed to be symmetric. We assume that individual
nodes might be colluded and might be collecting true data but
sending false data, or forwarding the data to adversary nodes
of interest. We assume that nodes of a network have limited
resources (energy, computation power, and bandwidth).

B. Adversary Model

We use a Byzantine attack model, in which we consider an
adversary as a special node. The adversary can compromise
a set of nodes (making secret agreements with them) and
inject any false data through the compromised nodes or
collect information from the nodes. Subsequently, we assume
that some nodes can be physically colluded (by modifying
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Fig. 2. Communication metrics and their correlation.

some hardware components). We assume that when a node
is colluded, all the information which is inside the node
becomes accessible by the adversary. Thus, we cannot rely
on cryptographic or trustworthy methods for preventing the
attacks, since the adversary may extract cryptographic keys
from the compromised nodes, even the node may expose
its key. We assume that, through the colluded nodes, the
adversary can send false data to the network with the purpose
of distorting the final decisions on the applications tasks, or
collecting the final decisions. We also assume that a single
outsider or adversary, or a colluding group of adversaries, may
take control of colluded nodes, even enabling the nodes to
commence a sophisticated attack.

We also assume that the adversary may be intelligent.
Through agreement with a node, the adversary can enable
a node to work normally in some periods of time. During
this duration, the adversary remains silent. Then, it passes
information at another period. The adversary may get infor-
mation at a different period for different nodes of the network.
Interestingly, existing security protocols may not capture this
attack.

C. Reputation Systems

The idea of a reputation system can be used for trustworthy
and privacy systems. We consider tracking reputation score for
the possibility of a collusion attack, computed by a number of
system performance metrics.

A network can have various performance metrics. We focus
on a number of metrics of each node, as shown in Table I.
These metrics can be classified into four types:

• Time-based metrics. This measures the cumulative radio
active time. Example includes RadioOnCounter.

• Traffic-based metrics. This measures the cumulative
number of packets transmitted by a node. Example in-
cludes TransmitCounter, ReceverCounter

• Task-based metrics. This measure the cumulative num-
ber of tasks executed. Example includes TaskExec-
Counter, TaskPostCounter

• Authentication-based metrics. This is based on secure
network communications. Example includes Authentica-
tionCounter,



TABLE I
EXAMPLES OF PERFORMANCE METRICS

Metric Description
TaskExecCounter the number of tasks executed
FTaskExecCounter the number of tasks’ completion failure
TaskPostCounter the number of tasks posted in the system
AuthenticationCounter the given type of authentication method used
AckCounter the number of ACKs sent
AuthenticationNCounter the given authentication method is altered
NackCounter the number of NACKs sent
NackCounter the number of no acknowledgments
RadioOnCounter the number of times radio on
DupCounter the number of duplicated packets
RadioOnTime the amount of time radio on
SuccAckCounter the number of successfully transmitted packets
TransmitCounter the number of packets transmitted
NACKRetransmitCounter the number of packets negative transmitted
RetransmitCounter the number of retransmissions
FTransmission the frequency of transmissions for a given task
ReceverCounter the number of packets received
NTransmission the frequency of transmissions by a neighbor
InfpktTransmitCounter the number of infrequent packet transmissions
rPacketHeadConter the ability to replace data packets

Based on the performance metrics, we find temporal and
spatial correlation between them. Note that some metrics may
not be correlated at some point of time. That is, the set of
metrics at a given time may be a little bit different from other
time. In the case of the absence of a metric at a given time,
it is discarded from the correlation measurements in order
to reduce a false possible detection in a collusion attack.
A subset of metrics and their correlations can be seen in
Fig. 2. Each of the metrics conveys particular performance
information. For example, NACK is the number of negative
acknowledgments, NoACK is the number of times that there
are no acknowledgments received, RetransmitCounter is the
number of retransmissions, and so on. In practice, each of the
metrics has a value.

Suppose that, during one time period, the value of a
metric changes dramatically, possibly indicating that the node
is under collusion attack. However, the node seems to be
working properly, communicating with neighbors, exchanging
messages, and performing authentication using some security
protocols; it even returns correct values or decisions. However,
it might secretly pass confidential information to outsiders or
to the adversary. It can add some information with its correct
transmissions. This attack problem is the most sophisticated
one. However, the reputation score of nodes can be weak
based on the values of the metrics; even though many metrics
appear to be stable during another period, the node actually
encounters an attack. For a better detection, we assume that
the individual inspection of metrics on the same node may
overlook collusion attacks, or may flag detection failures
by error. Considering multiple nodes, an individual metric
is insufficient to uncover collusion attacks. As a result, the
reputation scores achieved by individual metrics or nodes may
not be so accurate. We use a correlation matrix for all the
metrics that include the value/status of the metrics. Then, the
reputation scores based on correlation maps of metrics are

calculated so that they can imply collusion attack information.
In this respect, we can define that the node whose reputation
score is different from its neighboring nodes is a colluded
node. We can find a snapshot in Fig. 1, where node 2 is
supposed to be colluded.

IV. COLLUSION ATTACK DETECTION

In this section, we discuss how the detection of collusion
attacks is performed. We first provide the correlation map
between metrics. Then, we provide the CAD scheme that
includes two sub-schemes.

A. Correlation Map

We develop a correlation map, which is a map representing
the pairwise correlations of the metrics. Each metric of the
map can be called a vertex and a relation/connection between
any two metrics is called an edge. We assume that the network
works in a periodic manner, where each period consists of
a set of discrete time periods. The map is constructed and
maintained periodically for each node in the system. At each
discrete time period t, a node si measures its working status,
i.e., the status for its metrics. Let m be the total number of
metrics and vx,t are the value of the xth metric at time t, 1 ≤
x ≤ m. It then has a status vector Si,t = (u1,t, u2,t, ..., um,t).
Each edge of the map has a weight that implies the reputation
score between the corresponding metrics.

The correlation between metrics are estimated in each time
slot τ ∈ t, which survives from time (τ − 1) ∗ w + 1 to time
τ ∗ w, that is [(τ − 1) ∗ w + 1, τ ∗ w]. Here, w is the size of
slot τ . Suppose that Vx,k and Vy,k are the values of metrics x
and y collected in time window τ , respectively. We can have
the following metrics for the values:

Vx,k = (ux,(k−1)∗w+1, ux,(k−1)∗w+2, . . . , ux,(k−1)∗w+w)

Vy,k = (uy,(k−1)∗w+1, uy,(k−1)∗w+2, . . . , uy,(k−1)∗w+w)
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We express the reputation score between Vx,k and Vy,k

using the Pearson’s product-moment coefficient [19]:

cτ (x, y) =
w

w∑

i=1

Vx,kVy,k−
w∑

i=1

Vx,k

w∑

i=1

Vy,k

σx,kσy,k

where σx,k and σy,k are their standard covariance. This
reputation score is in the range of [-1,1]. If the value is close
to either -1 or 1, it implies that there is a strong correlation
between the variables. If the value is close to zero, the
reputation decreases. As a result, we can build a matrix by
putting the reputation score between metric x and metric y
as the element cτ (x, y) of the matrix:

Matrix =

⎛
⎝

cτ (1, 1) cτ (1, 2) cτ (1,m)
cτ (2, 1) cτ (2, 2) cτ (2,m)
cτ (m, 1) cτ (m, 2) cτ (m,m)

⎞
⎠ .

This correlation matrix exhibits symmetry, i.e., cτ (x, y) =
cτ (y, x). Furthermore, since any such metric is absolutely cor-
related with itself, cτ (x, x) = 1. This matrix is a representation
of the correlation map.

B. Temporal and Spatial Collusion Detection Schemes

CAD includes two sub-detection schemes, i.e. CAD detects
collusion information in the temporal and spatial dimensions
in a distributed manner. In the temporal scheme, temporal
identification is made such that it refers to abrupt changes in
the correlation map of a node. For example, at a given point in
time, some nodes may pass some information to an adversary,
and then it keeps working normally at some periods. At
different time, the adversary may get information for different
nodes of the system. In this case, the correlation may change
slightly and the change can be overseen by some security
protocols. Additionally, a node is shown to work properly
and communicates with neighbors, and its authentication to
other nodes looks fine. At a point in time, the node may pass
information further.

Spatial detection determines pattern discrepancies using
multiple nodes. If a collusion is detected by both temporal
and spatial detection schemes, then the adversary has a high
possibility of demonstrating a real problem. The temporal

detection scheme investigates the progress of correlation maps
over time. In every slot (e.g., [1, . . . , w], [w + 1, . . . , 2w]), a
correlation map of node si is computed. If the system operates
normally (i.e., no nodes are colluded or no events such as
network congestion occur), the correlation map of the node
should remain relatively stable. On the other hand, abrupt
changes in consecutive maps imply collusion attack. We think
that a map may be affected by false positive detection, which is
due to factors like heavy network traffics. However, an abrupt
change in consecutive maps can be not the sign of traffic.

1) Temporal Collusion Detection: For two consecutive cor-
relation maps denoted by CMi,τ and CMi,τ+1 of the same
node (for successive time slots), a sudden change in the map
may happen at one or more edges. For example, suppose that
two metrics RadioTransmitOn and TransmitCounter are highly
correlated in CMi,τ , but not in CMi,τ+1. Then, even if all of
the other edges are the same, the change in correlation map is
considered abrupt. As a result, we concentrate on the timely
detection of such changes in individual edges between vertices.

In the simulation evaluation, we use a data set that maintains
m = 16 metrics per sensor; for each correlation map sequence
CM(i), there are a total of m ∗ (m − 1)/2 = 120 different
time series. When a time slot finishes, CAD computes if
there is a sudden change for any edge. If there is a change,
CAD indicates the change as a change point of node si. The
detection of a sudden change for each edge in the map is
modeled as a change point analysis problem.

We propose Algorithm 1 for change point detection
by following a classical CUSUM algorithm [20] to de-
tect change points for the time series of a sensor.
{c1(x, y), c2(x, y), . . . , ci(x, y)} denotes the reputation scores
of edge (x, y) from the first time slot to the current one. In line
3 to line 4, the cumulative totals can be from CT0 to CTn.
The insight behind the cumulative totals is that, if there are
no sudden changes in the scores, then the cumulative totals
just becomes near zero. Suppose that, at the initialization, all
the scores are above the average: the term CTCP is always
larger than zero, causing cumulative sums CTi to increase
gradually. If ck+1(x, y) is an abrupt change, CTk+1 should be
much smaller than CSk, k is the last index before the abrupt
change. As a result, CSk will dominate both the preceding and
the subsequent cumulative sums. The change score is denoted
as CTcng .

In line 7, bootstrap analysis is provided as a way to verify
the significance of the change by coping with the behavior
of CUSUM if there are no change points. In this step, the
time series ci(u, v) are collected randomly. Based on the
random ordered time series, a new sequence of cumulative
totals, CTcng , are calculated. After performing bootstraps B
times, among which there are D times (CT conf

cng > CTth), the
confidence level CT conf

cng of the new change point, CTcng , is
calculated as D/B, as seen in line 9.

When the confidence level of CTcngf is higher than a prede-
fined threshold CTth (e.g., 92%), we say that a sudden change
happens in the current time series. As a result, ck+1(x, y) can
be achieved as the change point. At the end of the algorithm,



Algorithm 1: Change Point Detection

1. for ith node si
2. Calculate ci(x, y)
3. Calculate CTcng

4. CTi = 0
5. CTi = CTi−1 + CTCP

6. CTCP = ci(x, y)−
n∑

i=1
ci(x, y)/n

7. CTcng = max(CTi)−min(CTi)

8. Calculate CT conf
cng ← D

B

9. If CT conf
cng > CTth

10. there is a sudden change //possibly due to the collusion
11. Get CTk = max |CTi|
12. // k is the last index before a change
13. Return ck+1(x, y) as the change point

the nodes whose correlation maps change acutely are detected.
As shown in Fig. 2, a reputation scores between nodes in a
neighborhood can be seen.

2) Spatial Collusion Detection: This subsection briefly
discusses the spatial collusion detection, taking ideas of corre-
lation maps of all nodes in each time slot, and grouping similar
ones together. A node from a subset of nodes whose correla-
tion maps deviate from the common patterns are considered
suspicious, as shown in Fig. 2. Node 4’s reputation score dif-
fers significantly from its neighboring nodes. The neighboring
nodes can easily report about node 4’s reputation, that is, it
might be colluded. Consider that CM1,t,CM1,t, . . . , CMn,t

are the correlation maps in a discrete period t of a subset
of n nodes; we divide them into K clusters with cluster
centroids C1, C2, . . . , CK . The confidence level of node i
being suspicious is defined as: min

j
(dist(CMi,t, Cj)), where

dist(CMi,t, Cj) is the fractional distance function between
two correlation maps. Based on the distance and node reputa-
tion, a node status can be given whether there is a collusion
in the node or not. For reducing the false-positive status, the
reputation score is considered with the distance.
K-Means clustering algorithm is popular for grouping sim-

ilar kind of values that are used to find the distance based
on the correlation map. A node with the farthest distance
from the center can be calculated. We can compute this if
a node is colluded in a distributed manner, where each node
makes a status decision based on the distance and reputation
score. If the local status denoted by λc of node sj is greater
than 0.5, node si can report that node sj’s status is colluded.
Similarly, if a false-positive status is made by node si, it can
be detected by other nodes’ status decisions. The procedure
of spatial collusion detection, based on the above discussion,
is given in Algorithm 2.

The collusion detection procedures in both Algorithm 1
and Algorithm 2 are executed in a distributed manner. If
we consider a centralized detection scheme, the base station
(BS) would handle the collusion detection as well as the
application tasks. In each discrete period, the BS needs to
make a decision about the colluded nodes’ status that is solely
based on the reliable packet transmission of all packets by
all nodes in the system. This detection is not suitable for a

Algorithm 2: Spatial Collusion Detection

Input: Correlation values of all the neighboring nodes in time t
Output: A ranked list of nodes sorted by nodes’ status

and reputation score
Status: (λc ≤ 0.5: normal), (λc > 0.5: colluded)

1. for each ith node si ≤ n where n = |N |, N ∈ S do:
2. // n← the number of neighboring nodes
3. (λc)si ←− 0 // each node si is normal
4. Get correlation maps CM1,t,CM2,t, . . . , CMn,t

5. Calculate cluster centers as C1, C2, . . . CK

6. Calculate node si’s status by (λc)si ← min
si

(dist(CMi,t, Cj))

7. Find node sj ’s reputation score cτ (x, y)
8. if (λc)sj > 0.5 and (cτ (x, y))sj > 0.3 then
9. si marks/reports that sj is colluded
10. if si does not transmit the decision then
11. sj marks/reports about si as a colluded
12. return a ranked list of nodes with the status

resource-constrained system, which usually includes energy
and bandwidth constraints. For example, if each node needs
to send all its packets to the BS (where each sequence of
transmission can have many packets), the centralized BS relies
on the on all the packet receptions; it may not be able to
reliably offer a collusion detection in a given period.

V. PERFORMANCE EVALUATION

A. Simulation Methodology

For the evaluation, we consider a sensor network. We
conduct simulations using the OMNeT++ platform to eval-
uate a CAD scheme that includes the two collusion at-
tack detection methods. We implement it on the OM-
Net++ simulation environment using the Castalia simulator
(http://castalia.npc.nicta.com.au/index.php).

We conduct simulations on a PC with 3.30 GHz Intel
Core i5 with 4 GB RAM, running a 64-bit slots 8. We
uniformly deploy 100 nodes in a 200m × 200m target field.
For the radio model, we consider IEEE 802.15.4 protocol
that defines MAC and physical layers for low-rate wireless
sensor networks and the upper layers to form a complete
network stack built are specified by ZigBee. The objective of
IEEE 802.15.4 is to enable low-cost communication between
devices. In particular, the physical layer allows data rates up
to 250 kB/s. The MAC layer supports collision avoidance.
Beaconing is used for synchronization between nodes. We set
the maximum transmission range of all nodes to 30m. The
nodes communicate with each other by broadcasting messages
across channels. These are assumed to be symmetric. We set
sensor node communication range twice the sensing range,
which is to ensure that two nodes with an overlapping sensing
area are capable of communicating directly with each other.

We use a real-world dataset for evaluating CAD in the
sensor network, Intel dataset [21]. Since the dataset is given
for 54 sensors, the set is repeated for the additional nodes in
our simulations.

For collusion attack information, we randomly inject
changes to different types of metrics of 10% of the nodes
of the WSN. From the 10% of the nodes, we change the
radio capability metric [TransmitCouter (number of packets
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Fig. 4. Results achieved during the normal operation and operation under collusion attack: (a) number of packets transmitted by node 4; (b) number of
packets transmitted by nodes 1-5 in a same period; (c) correlation scores between TransmitCouter and TransmitCounter, and between TransmitCouter and
rPacketHeadConter.

transmitted)] of 4% of the nodes, and provide an infrequent
packet transmission rate [InfpktTransmitCounter] to 3% of the
nodes, and provide the ability to replace data packets with
some other packets [rPacketHeadConter] to 3% of the nodes.
As a result, at some time points, their packet transmission rate
should be high, while it is normal or low at other times. We
compare these colluded nodes with list of the nodes that have
not been made colluded.

For the average collusion attack detection, each simulation
was repeated 100 times, and then results were averaged. We
calculate the number of packets transmitted, packet delivery
ratios (PDR), and temporal detection. PDR is defined as the
ratio between the amount of packets received by the BS and
that transmitted by the source node. The detection rate of our
scheme is compared with a recent scheme, called interative
filtering (IF) based collusion detection [3]. However, IF only
addresses collusion attacks at the data aggregation level, rather
than at the communication component level.

B. Simulation Results

At first, we demonstrate a set of interesting results for
collusion detection. We calculate the number of transmitted
packets by each node. We can see in Fig. 4(a), the number of
packets transmitted by the first five nodes in every 45 minutes.
In the case of node 4, we find that, the values of metrics
change dramatically at time periods 10, 25, 30, 40, 45. This
is possibly due to the the collusion attack. In a real case, such
a node might have a secret agreement with the adversary or it
might be compromised. Based on the analysis, we find that the
metric appears to be stable and node 4 works well, similar to
other nodes. Fig. 4(b) shows the data curves correspond to the
packet transmissions of first five nodes during period 4. Even
though some metrics exhibit different values and variations
at different times, all five nodes perform well; however, the
correlation among them is relatively weak. This result implies
that, even if considering multiple nodes, an individual metric
is insufficient for uncovering attacks. Using several metrics
can be helpful for detecting collusion by the reputation score
and distance.
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Fig. 5. The PDR of three nodes achieved during the normal operation and
operation under collusion attack.

We depict the reputation scores of the three metrics (Trans-
mitCouter, InfpktTransmitCounter, rPacketHeadConter) in Fig.
4(c). Since these metrics are always clearly correlated, the rep-
utation scores are larger than 0. In the figure, there are several
change points detected by the temporal detection algorithm.
Each of them is marked with a circle, and the change point
is detected at 09:00, which is the most remarkable one, i.e.,
it has the highest confidence level. The reason is that this
node received packets from its neighboring nodes, but did not
forward all of them to the BS or it has replaced some packets
with other information. In this case, the colluded node receives
the message and pause for a moment. It can also take time for
replacing packets.

The PDRs estimated for nodes 3, 4, and 5 are directed in
Fig. 5. Each mark/point in Fig. 5 corresponds to the time
when the temporal subscheme reports change points, or one
of the system metrics of a node that is detected in the spatial
detection scheme. We can analyze that node 3 is the boundary
node transmitting data via node 4, which receives all the
packets from the nodes. In a real case, it can replace some
packets with its own secret packets, or drop some packets of
node 3. We can see that the PDR of node 4 is lower than that
of other nodes.

A set of interesting results is depicted in Fig. 6 that shows
the collusion detection rate of CAD, and IF can also be seen
in Fig. 6. It is difficult to compare this with the IF scheme,
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Fig. 6. The detection rate achieved during the normal operation and operation
under collusion attack.

as the collusion detection in IF is performed on signal content
aggregation, not on the packet aggregation. In signal content
aggregation, readings are summarized or average, and a weight
is calculated. This is quite different from packet aggregation,
as each individual packet is needed to be processed separately
in packet aggregation. We just have a look the overall detection
ability. We can see that CAD can achieve a detection rate
up to 92%, while IF is able to detect 76%. The reason is
that IF did not particularly consider any collusion attacks at
the communication level, although IF is particularly useful for
collusion attack detection in data aggregation.

In Fig. 6, it is seen that CAD does perform better than 62%.
The reasons might be due to the proper collusion detection
model and other related attack models. In practice, faults in
the system can be correlated with communication components
of the system. Fault detection should be analyzed for a better
collusion detection.

VI. CONCLUSION

Existing security methods or protocols suggested in the
literature are able to detect a lot of security attacks, but they
did not systematically consider collusion attack detection. As
mentioned, some sophisticated collusion attacks can be made
in the presence of these protocols. This paper presents the
CAD (collusion attack detection) scheme, a novel approach
that relies on minimum domain knowledge. CAD discovers the
correlation between system metrics related to communication
hardware or software using two stage cross validation schemes
to detect collusion. Our evaluation, based on the Intel dataset
under the collusion information injection, demonstrates that
the two stages indeed capture collusion attack information.
One interesting matter is that, if there is a false positive
detection of collusion attack in CAD, we realize that there
might be a system performance degradation, or there are
potential faults/failures. However, the values of the metrics can
be affected by system faults and/or by a poor network envi-
ronment. We believe that faults in a system can be correlated
with communication components of the system. Thus, fault
detection should be analyzed for a better collusion detection.
These are the focus of our future work.
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